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ABSTRACT. In an earlier work by the author the Generalized Richardson Ex- 
trapolation Process (GREP) was introduced and some of its convergence and 
stability properties were discussed. In a more recent work by the author a special 
case of GREP, which we now call GREPM1 , was considered and its properties 
were reviewed with emphasis on oscillatory sequences. In the first part of the 
present work we give a detailed convergence and stability analysis of GREPM1) 
as it applies to a large class of logarithmic sequences, both convergent and di- 
vergent. In particular, we prove several theorems concerning the columns and 
the diagonals of the corresponding extrapolation table. These theorems are very 
realistic in the sense that they explain the remarkable efficiency of GREPM1) in 
a very precise manner. In the second part we apply this analysis to the Levin- 
Sidi d(l)-transformation, as the latter is used with a new strategy to accelerate 
the convergence of infinite series that converge logarithmically, or to sum the 
divergent extensions of such series. This is made possible by the observation 
that, when the proper analogy is drawn, the d(l)-transformation is, in fact, a 
GREPM . We append numerical examples that demonstrate the theory. 

1. INTRODUCTION 

In [13] the author introduced a generalization of the well-known Richard- 
son extrapolation process and discussed some of its convergence and stability 
properties. This generalization-called GREP for short-has proved to be very 
useful in accelerating the convergence of a large class of infinite sequences with 
varying degrees of complexity in their behavior. Such sequences arise naturally 
in the computation of infinite series and infinite integrals that may be oscillatory 
or monotonic, or that may behave in a more complicated manner. They also 
arise from trapezoidal rule approximations of finite-range simple or multiple 
integrals of regular or singular functions, etc. In addition, these sequences may 
be convergent or divergent. For a brief survey and areas of application, see also 
[17]. 

The sequences for which GREP is useful arise from, and are identified with, 
functions A(y) that belong to some general sets that were defined in [13] and 
denoted there by F(m), m being a positive integer. 
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The simplest case of GREP that is applicable to sequences identified with 
functions in F(M) was considered by the author in [16], and will be called 
GREP (1) in the present work. In [16] an efficient recursive technique-the W- 
algorithm-for the implementation of GREP (1) was proposed, and some of the 
convergence and stability properties of GREP(1) were summarized with more 
emphasis on oscillatory sequences. Such sequences arise, e.g., in the computa- 
tion of convergent or divergent (very) oscillatory infinite integrals (see, e.g., [18] 
and [20]). Recently, a very economical recursive implementation for GREP, as 
it applies to sequences that arise from functions in F(m), with arbitrary m, 
was proposed in [4], and denoted the W(m)-algorithm. For m = 1, the W(m)- 
algorithm reduces exactly to the W-algorithm. A FORTRAN 77 program that 
implements the W(m)-algorithm is included in the appendix of [4]. 

In the present work we would like to continue our study of GREP (1) in the 
context of logarithmically convergent sequences and their divergent extensions 
that are associated with functions in FM . In this connection we note that 
several results pertaining to the T-transformation of Levin [7] have already been 
published by the author in [14] and [15]. Some of these have been reviewed 
recently in [19], see also [2, p. 116]. (We recall that the T-transformation is 
a GREP (1), and that the t-, u-, and v-transformations are particular cases of 
it.) The results of the present work, however, are totally different from those 
given in [14] and [15], and so are the analytical techniques leading to them. 

We start by giving the descriptions of the set FM') and of the accompany- 
ing extrapolation method GREP(1)* This is done in Definitions 1.1 and 1.2, 
respectively, which also establish some of the notation that we use throughout 
this paper. 

Definition 1.1. We shall say that a function A(y), defined for 0 < y < b, for 
some b > 0, where y can be a discrete or continuous variable, belongs to the 
set FM1), if there exist functions +(y) and ,8(y) and a constant A such that 

(1.1) A = A(y) + q(y)fl(y), 

where fl(4), as a function of the continuous variable 4, is continuous for 
0 < 4 < b, and, for some constant r > 0, has a Poincare-type asymptotic 
expansion of the form 

00 

(1.2) f( 1) Zfl,ir as &-0+. 
i=O 

If, in addition, the function B(t) = fl(tlIr), as a function of the continuous 
variable t, is infinitely differentiable for 0 < t < br, we shall say that A(y) 
belongs to the set F.() . Note that F(1) c FM . 

Remark. We have A = limy 0+ A(y) whenever this limit exists, in which case 
limyo0+ q(y) = 0. If limy,0+ A(y) does not exist, then A is said to be the 
antilimit of A(y) . In this case, limy-O + +(y) does not exist, as is obvious from 
(1.1) and (1.2). 

It is assumed that the functions A(y) and q(y) are computable for 0 < 
y < b (keeping in mind that y may be discrete or continuous depending on 
the situation) and that the constant r is known. The constants A and f3i are 
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not assumed to be known. In attempting to accelerate the convergence of a 
sequence that can be identified with A(y), the idea, thus the problem, is to 
find (or approximate) A whether it is the limit or the antilimit of A(y) as 
y -* 0+, and GREP (1), the extrapolation procedure that corresponds to FM , 
is designed to tackle precisely this problem. The /3i are not required in most 
cases of interest, although GREP (1) produces approximations (usually not very 
good ones) to them as well. 

Definition 1.2. Let A(y) E F(1M, with +(y), fi(y), A, and r being as in Def- 
inition 1.1. Pick yl E (0, b], 11= 0, 1, 2, ..., such that Yo > YI > Y2 > E , 
and liml,0 yl = 0. Then AiA, the approximation to A, and the parameters 

/i3, i = 0, 1, ..., n - 1, are defined to be the solution of the system of n + 1 
linear equations 

n-I 

(1.3) Al = A(y) + j(Y) iyrj < j + n?, 
i=o 

provided the matrix of this system is nonsingular. It is this process that gener- 
ates the approximations Ai that we call GREP (1). 

As is seen, GREP (1) produces a two-dimensional table of approximations of 
the form 

n=0 n= 1 n=2 n=3 
AO 
Al AO 

(1.4) A2 Al AO , AJ A(yj), j=0, 1 
A? A2 Al AO o l 2 3 

Numerical experiments and the theory that exists for some cases suggest that 
when limy,o+ A(y) exists, the columns of this table converge, each column 
converging at least as quickly as those preceding it, while the diagonals converge 
more quickly than the columns. 

Going down a column corresponds to letting j -) ox while n is being held 
fixed in Ain, and this limiting process was called Process I in [13]. Going along 
a diagonal corresponds to letting n -x 00 while j is being held fixed in AJn 
and this limiting process was called Process II in [13]. 

Before going on, we shall let t = yr and t1 = yr, / = 0, 1, ..., and define 
a(t) _ A(y) and (r(t) q_ (y). Then the equations in (1.3) take on the more 
convenient form 

n-I 

( 1.3/) AJn a(tl) + (9(tj) E ,Bjt'i j < I < j + n. 
i=O 

A closed-form expression for Ai is given by the following theorem. 

Theorem 1.1. Let D3 denote the divided difference operator of order k over 
the set of points tS ,t ..., ts+k, where, for any function g(t) defined at these 
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points, 

(1.5) 

s+k {s+k k 

Ds {g(t)} = g[tS , ts+l , * . ts+k] = s+ s+k 1 

Then Ai is given by 

(1.6) A D'{1/(o(t)} 

The result in (1.6) is used in obtaining the W-algorithm for the efficient 
recursive computation of the Ai. This algorithm is summarized in Theorem 
1.2 below. In the present work we make use of (1.6) also in the analysis of AJ, 
where it proves to be a rather powerful tool. 

Theorem 1.2 (The W-algorithm). Let 

(1.7) Mo = a(ts)/p(ts), No = 1/ p(ts), s = 0, 1, 2, 

and define recursively 

(1.8) 

MS +k'iks Ns~+'-Ns A 
- Mk - I Ns = 1k_ k1- 

I s= 0, 1, ..., k=1,2 
ts+k-ts ts+k-ts 

Then 

(1.9) A= Ns X 
M 

= 0,1, ..., k=O, 1 
k 

For all these developments and the proofs of Theorems 1.1 and 1.2 we refer 
the reader to [16]. We only mention that the notation of the present work is 
slightly different from that used in [16]. For instance, the Ai of the present 
work are related to the A(j) of [16] through Aj = A(j) 

When rp(t) = t, GREP (1) reduces to the classical Richardson extrapolation 
process that has been analyzed thoroughly in [6] and [3]. As follows from this 
analysis, and as is observed numerically, this process is quite unstable when 
the t, approach 0 slowly, e.g., t1 = 0(I-1) as I -x 00, but is very stable and 
accurate when tj+I /t, < Cc for some fixed wo e (O, 1 ), i.e., when the t, approach 
0 at least exponentially. This suggests that, whenever feasible computationally, 
we should prefer the choice tj+ I/t1 t <, co E (O, 1) . 

The purpose of the present work is to carry out a detailed convergence and 
stability analysis for GREP (1) in the presence of functions r(t) that are more 
complicated than (0(t) = t, again with the choice t1+1/t, < wc, w E (0, 1) 
(or another similar one). The (0(t) that we will concern ourselves with be- 
have essentially like t5 as t -- O+ for some 5 $ 0, -1, -2, ..., and they 
arise naturally in a large class of logarithmically convergent sequences and their 
divergent extensions. It seems that these divergent extensions have not been 
treated elsewhere before. 
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The plan of this paper is as follows. 
In ?2 we provide a complete convergence and stability analysis for GREP (1) 

under Process I with the condition lim1 +o (t1+1/t1) = w,) CO E (0, 1). The 
main results of this section are Theorem 2.1 on convergence and Theorem 2.2 
on stability. 

In ?3 we derive upper bounds for the error in GREP (1) under Process II 
with the condition t1+1/t1 < co, co E (0, 1). From these bounds we obtain a 
powerful convergence result very similar to those of [6] and [3]. In addition, we 
provide theoretical and numerical stability analyses. The latter can be carried 
out simultaneously with the computation of the AJn, also by the W-algorithm, 
and at no extra cost. The main results of this section are Theorem 3.1 and its 
corollary on convergence, and Theorems 3.2 and 3.3 on stability. 

Section 4 is devoted to the acceleration of convergence by the Levin-Sidi 
d(l) -transformation of some infinite series EZ?=1 an, whose terms a, behave 
essentially like n'a- for n -* oc, where 3 $ 0, -1, -2, ..., but 3 is ar- 
bitrary otherwise. These series converge for Re 3 > 0, and diverge otherwise. 
If we denote Sn = ZEn ai n = 1,2,..., and S = limn,ooSn in case of 
convergence, then (see, e.g., [15]) 

(1.10) Sn -S + na,(fla + sl n-I + n2n-**)o. 

The first main result of ?4 is Theorem 4.1, which says that ( 1.10) holds for some 
well-defined antilimit S also when limn, S,oSn does not exist. The theorem 
actually gives S exactly. In many cases, S turns out to be a function that is 
analytic in the parameter 3, and thus the d(l)-transformation proves to be an 
effective tool for analytic continuation of S in 3 to regions in the 3-plane 
where E' I an diverges, within the limits of finite precision arithmetic. It 
seems that extrapolation methods have not been employed for such applications 
before. The reason for this may be that the existence of an antilimit and its 
meaning for divergent series of logarithmic type was not understood properly. 
By letting y = n-I, A(y) _ Sy- = Sn, and +(y) =_ y-Iay- = nan, we see that 
A(y) E FM1), y being a discrete variable. Similarly, the d(l)-transformation 
is shown to be a GREP(1). Finally, it is shown that all the results of ??2 
and 3 apply directly to the d(l)-transformation when this is implemented using 
a strategy that was first proposed in [4] for use with logarithmic sequences. 
This strategy has been observed to be extremely stable and accurate, and has 
proved to be the best in all examples done by the author. In many cases, where 
the sequence {Sn,c}'i converges or diverges mildly, the d(l)-transformation in 
conjunction with this strategy seems to be capable of producing approximations 
to S that are correct almost to machine accuracy. 

In ?5 we give some numerical examples that support the results of ??2, 3, and 
4. These include both convergent and divergent series of the type discussed in 
?4, and their convergence is accelerated by the d(l)-transformation. 

Finally, we note that the d(l)-transformation is the simplest form of the 
d(m)-transformation of Levin and Sidi that was developed in [8]. The d(m)- 
transformation, by way of its construction, is capable of accelerating the con- 
vergence of a very large class of sequences with great success, and has a larger 
scope than most other acceleration methods. Being a GREP itself, it can be im- 
plemented very efficiently by the W(m)-algorithm of [4]. In the recent paper [22] 



1632 AVRAM SIDI 

the d(m)-transformation was compared with various other convergence acceler- 
ation methods as these are applied to some class of logarithmically convergent 
sequences. For all cases treated in [22] the d(m)-transformation was observed 
to give very stable and accurate results. See also [5] , where an extension is 
proposed. 

2. THEORY FOR PROCESS I: n FIXED, j -, oo 

Even though rp(t) may be a complicated-looking function in general, for 
many logarithmically convergent sequences that arise in practical problems its 
most dominant behavior for t -O 0+ is quite simple. A commonly occurring 
behavior is tl for some J. For this and even for some more complicated 
behavior of r(t) we are able to give a precise quantitative analysis of Process I 
when the t, are suitably chosen. This analysis is based on some of the results 
of the recent paper [19] by the author. See also [2, p. 68]. 

2.1. Convergence analysis of Process I. 

Theorem 2.1. Pick the t, in GREP(1) to satisfy 

(2.1) lim + = forsomeE(0, 1). 
I-o00 t1 

Assume that 9(t) is such that 

(2.2) lim 0((t1+) = w for some (complex) 5 $ 0, -1, -2, 

and define 

(2.3) bk +k, k= 1, 2. 

Then, whether liml<,0 a(tl) exists or not, we have 

(2.4) An-A lffn+l r ( Ib )]Pt)t as j oo, 

where fin+# is the first nonzero /3i for i > n. 
Proof. Defining Vk(t) = I(t)tkl and ak = -flk-i, k = 1, 2, ..., we can 
rewrite ( 1.1) in the form 

00 

(2.5) a(t) A + 1: kVk(t) as t -- O+ . 
k=1 

From (2.1) and (2.2) we also have 

(2.6) lim (t) = Ibk, k = 1, 2. 

By the assumption on 5, we have bk # 1 for all k. Also, limk,, .b = 0, 
and lb II > 1b21 > ..., so that the bk are distinct. Consequently, a slightly 
generalized form of Theorem 2.2 in [19] applies, and we obtain (2.4). We leave 
the details to the reader. o 
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Remarks. (1) Combining (2.2) with (2.4), we see that 

(2.7) lim sup IA -A I lj < I bn+ju+l I = )Re +n+, 
j-*oo 

from which we also have 

(2.8) A -Ai = O( (w + e)(Re +n+#)J) as j oo 

where E > 0 is arbitrarily close to 0. 
(2) Now limt10+ a(t) exists if Re J > 0 . If Re a < 0 however, limt o+ a(t) 

does not exist when f80 $ 0. In case the limit exists, all columns of the table in 
(1.4) converge, each column converging at least as quickly as the ones preceding 
it. When Re 5 < 0 and a $ 0, -, -2, ..., all the columns in (1.4) with 
n = no, nO + l, nO + 2, ..., where no= L-Re + J, converge, each one 
converging more quickly than the ones preceding it. The columns with 0 < n < 
no - 1 may diverge. If a column diverges, it diverges at most as quickly as the 
column preceding it. If /,m $ 0, but fim+i = = fig-i = 0, and /3, $ 0, then 
we have 

A-Ai=o(A -A ) asj -*oo, m+l <p<s 
(2.9) A-AiP6p(A-Aj) asj-0oo, m+l<p<s-1 some0p, 

A - A =o(A - Ai) as j -oo. 

(3) Concerning the condition in (2.2), the important point to realize is that 
liml1, (o(tj+1 )/q,(tj) = K is assumed to exist. With K defined, we now deter- 
mine (5= log K/log o. Finally, the condition in (2.2) is satisfied, e.g., when 

(2.10) 
p(t) pilogtV't5 as t -* 0+, p, v and a complex, 5$ 0, -1, -2,. 

Note. The proof of Theorem 2.1 of this work was achieved by employing The- 
orem 2.2 of [19]. This result concerns the acceleration of convergence under 
Process I of the generalized Richardson extrapolation process for a function 
a(t) that satisfies (2.5) with lim1,0 pk(tl+1)/k(tl) = bk , and bk 54 1, and 
bk O bj if k $ j. With these conditions, this result is asymptotically best 
possible for j -x 00 . Recently another result for Process I, with different as- 
sumptions on the 9k(t) has been given in [9, Theorem 3]. It is interesting to 
note that this result too applies to the case treated in [19], see [9, Example 1], 
but produces a much weaker theorem than [19, Theorem 2.2]. 

2.2. Stability analysis of Process I. With the problem of convergence resolved, 
we now go on to tackle that of stability. We recall that Ai can be expressed in 
the form 

n 

(2.1 1 ) Ai = Y ia(tj+i) 
-i=O 

with 
n 

(2.12) 
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The exact expression for YJ' is not very crucial at this point. What is important 
to realize is that under the conditions of Theorem 2.1 we can employ Theorem 
2.4 of [19] to conclude that Process I is stable in the sense that 

n 

(2.13) supE :ly |i < 0. 

J i=0 

Actually, we can state a much more precise result as follows: 
Theorem 2.2. Under the conditions of Theorem 2.1 and with the notation therein, 
we have 

(2.14) lim YJ j=YSE i=0, 1,... , n, 
j-*+00 n,i Y 

where the n,j are defined by 

(2.15) itIG1zb) = n,iA' 
i=I ~~~i=O 

Consequently, (2.13) holds. Furthermore, if 3 is real, then 
n 

n~' 1 +bi 
n 

+(,6i 
(2.16) lim E 1=lbjl - 01I1-+i- 

and if 3 is complex, then 

(2.17) 3>00 E In iln I _ lbil n 11- 0Rc5+i-I| (2.17) 1+mbj '1 + 0Re+i-1I j-+ =O i= 1- bi ilI~i 5i1 
Proof. The relations (2.15) and (2.16) are direct consequences of Theorem 2.4 
and its corollary in [19]. The proof of (2.17) is similar to that of (2.16). c1 

As is well known, when computations are done in finite precision arithmetic, 
the accuracy and stability of the computed Ai (call them AJt), as opposed to 
the exact AJ, is dictated by Ji--7i=o I yJ, i' in the sense that 

(2.18) IA' - AJI <F ([JmaxlEil) (2.18) | ~~~~n nl n(<i<j+n ) 

where Ei is the error in A(yi). Therefore, for an extrapolation procedure to 
be reliable, the associated r J should stay bounded, or at most should increase 
mildly, with increasing j in Process I and with increasing n in Process II. 

3. THEORY FOR PROCESS II: j FIXED, n -x o0 

We noted in ? 1 that Process II has a much better convergence behavior than 
Process I. Yet Process II has always proved to be much more difficult to ana- 
lyze. Normally, in order to obtain results that can truly explain the numerically 
observed behavior of Process II, we have to assume more about the function 
(0(t) than we do for Process I. For example, an asymptotic condition such as 
(2.10) (or, more generally, (2.2)) that is local in nature will not be very helpful. 
The reason for this is that Process II is based on information coming from the 
interval (0, tj] (see the defining equations in (1.3) and (1.3')), and this inter- 
val is fixed as j is held fixed. This implies that we need to specify a global 
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condition on (0(t), valid in (0, tj]. Simple, yet realistic, global conditions 
satisfied by (0(t) in many cases of interest will be given in Lemmas 3.4 and 
3.5 below. (For Process I, on the other hand, the information comes from the 
points tj, tj+I, ..., tj+n and since j I oo , hence tj -* 0+, the information 
comes from a shrinking (right) neighborhood of t = 0. This explains why (2.2) 
is sufficient for obtaining the optimal result of (2.4).) 

3.1. Convergence analysis of Process II. We start by deriving an error expression 
for AJ. 

Lemma 3.1. The error in Ai is given by 

(3.1) A-A - D{B(t) } 

where B(t) =-8(tl/r). 

Proof. The result follows from A - A(y) = A - a(t) = (r(t)B(t), cf. (1.1), and 
from the linearity of the divided difference operator Di . o 

We now go on to investigate the numerator and denominator of (3.1) sepa- 
rately. We begin with the numerator. 

3.1.1. Upper bounds for the numerator of (3.1). 

Lemma 3.2. Pick the t1 in GREP(1) to satisfy 

(3.2) tI < co for some co E (0, 1). 

Define the positive constants M(i) by 

(3.3) Mn1j)= max B(t)-Z /fit tn) 
o<t<t (| E |i=O t 

Then 

(3.4) jDj {B(t)}l < CnMn(j) < CoOMV), 

where Cn and COO are defined by 

(3.5) Cn = II I jt n = 1, 2, ...; CO im . 
i=l 

Proof The proof of (3.4) and (3.5) is quite involved, but can be done by ex- 
tending and refining the analyses of [6] and [3]. We leave the details to the 
interested reader. o 

We now give a result that is similar to (3.4) but does not impose any condi- 
tions on the t4, such as (3.2). As we will see, the proof of this result is much 
simpler than that of (3.4). 

Lemma 3.3. Let A(y) E FSZP, cf. Definition 1.1. This implies that the function 
B(t) is infinitely differentiable for 0 < t < br. Define the positive constants R(i) 
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by 

(3.6) R(i)= - 1max IB( )(t)j, n n! o<t<tj 

where B(n)(t) denotes the nth derivative of B(t). Then 

(3.7) jDjn{B(t)}j < R(i) 
Proof. The result follows from the fact that 

(3.8) jDj{g(t)}l = 1g[t1, t+1, ..., t+] max g(n)(t) 
tjn<t<-t. 

whenever g(t) is in general complex and at least n times continuously differ- 
entiable on [t1+n, tj]. The inequality in (3.8) is a consequence of the Hermite- 
Gennochi formula stated as Lemma A. 1 in the appendix to this work. c1 

Note that when B(t) is infinitely differentiable on [0, br], the constants MY) 
and R(j), defined in (3.3) and (3.6), respectively, seem to be approximately of 
the same order of magnitude. They have the common lower bound I/h I = 

IB(n)(0)Il/n!, and satisfy Mni) < R(i) as well. 

3.1.2. Lower bounds for the denominator of (3. 1). We now turn to the analysis 
of the denominator of (3.1) , namely, Di { 1 / ro (t)}. 

First of all, we would like to note the exact result 

(3.9) Dn{t-1} = (-l)nl(tjtj+l tjn 

which can be proved by induction. (Actually, (3.9) holds with no restrictions 
on the t1.) Thus, when (r(t) = t, combining Lemma 3.2 and (3.9), we have 

(3.10) IA - Ai < CnMnj) (tjtj+i tj+n) 

which is the well-known result of [6] and [3] for the classical Richardson extrap- 
olation. This result is especially powerful when we invoke the condition (3.2) 
in the product HlI+n t,, which therefore satisfies 

j+n 

(3.11) Ef t1 < t'n+l,n(n+1)12 

I=j 

and hence tends to 0 extremely quickly (practically like on 2/2) as n -) 00. As 
a result, the combination of (3. 10) and (3.1 1) gives an excellent explanation of 
the quick convergence of AJn when (3.2) is satisfied and (0(t) = t. 

It is observed numerically in many cases in which (r(t) ta as t -) O+ for 
some (complex) 3 $& 0, -1, -2, ..., that the convergence behavior of Al to 
A, under the condition (3.2), depends on 3 and is practically independent of 
what exactly (0(t) is, and is very similar to that implied by (3.10) for (0(t) = t . A 
theoretical result similar to (3. 10) for the general (r(t) mentioned above, under 
the condition (3.2), does not seem to be known, however. The only result known 
to the author in this connection is one given in [3] for (0(t) = ta, 3 > 0, when 
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equality holds in (3.2), and this result is very similar to (3.10). The analysis 
of Ai as n -* oc for general rp(t) and/or under the condition in (3.2) seems 
to have posed a serious problem in the past. In the context and developments 
of the present work, the source of this problem seems to be the difficulty in 
analyzing DJ{11/r(t)} for general (r(t) and under the condition in (3.2). As 
we shall see below, the knowledge that Di is a divided difference operator helps 
in tackling this problem effectively in many cases. 

Going back to DJ {I / o(t)}, we see that a simple closed-form expression for 
it that is similar to (3.9) is practically impossible to obtain. We therefore aim at 
obtaining either its dominant asymptotic behavior for n -) o0 or a good lower 
bound for it, both of which will, in essence, behave like the product tjtj+l tj+n 
for n -- 00. It turns out that this is possible when suitable conditions are 
imposed on rp(t) . In Lemmas 3.4 and 3.5 below we present this approach with 
realistic conditions on ro(t) which are indeed met in many common applications 
involving logarithmically convergent sequences and their divergent extensions. 
These lemmas are based on the various developments in the appendix to this 
work, and turn out to be crucial in Theorems 3.1 and 3.2 on convergence and 
stability. We believe that the contents of the appendix are of importance and 
interest in themselves and may form the basis for further developments. 

Lemma 3.4. Let rp(t) = t h(t), where 3 and h(t) are in general complex, 3 $ 
0, -1, -2, ..., and h(t) is infinitely differentiable and nonzero on [O, tj] and 
satisfies maxo<t<tj .h(k) (t) I < K(pk) !pkk0, k = 0, 1, 2, ..., for some K, p, p, 
and 0. Pick t1, 1 = 0, 1, ..., to satisfy the condition in (3.2). Then, provided 
that either 

(i) 3 is a positive integer, or 
(ii) 3 is real but not an integer, and g(t) = 1/h(t) is a polynomial, or 

(iii) 3 is real out not an integer, and g(t) = 1/h(t) is a completely monotonic 
function on [0, tj], or 

(iv) 3 is complex, g(t) = 1/h(t) is a polynomial, and equality holds in (3.2), 
we have 

(3.12) Dj{l/qs(t)} = Q(j)Dj-t } 

with Q(i) , g(0) = 1/h(0) as n -+ oo, independently of j, for (i), (ii), and (iv), 
and IQ(j)I > L(j) g Ig(0)I = 1/ Ih(0)I as n -+ o0 for (iii). In all cases, 

(3.13) IDn{1/o(t)}I > IQ'I1 55i 
Iw0cn+n(n-1)/2 2jc+n1 0i i 

where 4l = wltt0, 1 = 0, 1, ..., and equality holds in (3.13) when t1 = ti, 1 = 

0, 1 .... If ((t) =_ t5, then Q(j) = 1 in all cases. 

The results in Lemma 3.4 follow from Lemmas A.6-A.8. An important point 
to note is that the constants IQ(j) are bounded below by a positive constant 
independent of n. This implies that IDi{I 1/((t)}I tends to infinity as n -* o0 

practically at the rate W-n 2/2, which is what we, in fact, wanted to establish. 
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Note that for the cases (ii), (iii), and (iv) of Lemma 3.4, in which 3 is not 
a positive integer, we need to impose extra conditions on the function h(t). 
By imposing different conditions on h(t) we are able to obtain a result of a 
more general nature but weaker than those given in Lemma 3.4. This is done 
in Lemma 3.5. 

Lemma 3.5. Let (o(t) be complex in general, and infinitely differentiable and 
nonzero on (O, tj]. Define Vg(t) = 1/rg(t), and assume that g(n) (t) is nonzero 
on (0, tj] for all large n, and let 

(3.14) L() - [ min IRe Gn(t)2+ m2 IImGn(t) 12] 
Lb+n?<t?-tj t1+n ?t?-t1 

where 

(3.15) Gn(t) = yV(n)(t)/A(n)(t); A(t) = t-, a real, a $0, -1, -2. 

Then, for all large n, 

(3.16) IDj{l/lp(t)}I > L(j)IDj{tc}I. 
If tl, 1 = 0, 1, ..., also satisfy (3.2), then 

(3.17) IDjjl1(#(t)}l > ,+n(-) ^+ | -@ | 

The results of Lemma 3.5 follow from Lemma A.9 and Lemma A.4. Ob- 
viously, Lemma 3.5 may be useful when rp(t) = t-h(t) with Re 3 = a and 
h(t) infinitely differentiable on [0, tj], provided we have a way of bounding 
L(j) in (3.14) from below. This lower bound on L(j) does not have to be a 
constant. For the ultimate convergence theory it is enough if we can establish 
that at worst it goes to zero like pn'+f for some p E (0, 1) and e < 1 . 

3.1.3. Convergence theorem for Process II. Combining the upper bounds for 
DJ {B(t)} with the lower bounds for DJ { 1 /p (t)}, we finally have the main 
result of this section concerning the convergence of Process II. 

Theorem 3.1. Pick the t1 in GREP(1) to satisfy the inequalities in (3.2). Let 

(3.18) U(i) = fRn() when B(t) E C?[0, tj], 
CnAMk'j otherwise, 

with Mni), Cn, and R(j) as defined in (3.3), (3.5), and (3.6), respectively. Let 
also l = coltot, 1 = 0, 1. 

(i) Provided that ro(t) = tdh(t), with 3, h(t), and t1, l = 0, 1,..., as in 
any one of the four parts of Lemma 3.4, we have 

(3.19) 

with nQ (n ast I in the d[feen p o Ll +nem 34n.n(n-1)/2 

with Qni) as in the different parts of Lemma 3.4. 
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(ii) If (p(t) is as in Lemma 3.5, then we have 

(3.20) 

I < L Ita1-' < (nj) [|II 1+n,,an,)n(n-l)/21 
IA-A n< IDJ{~K [=1 alltW 

with a and L(/) as in Lemma 3.5. 

We now discuss the bounds in (3.19) and (3.20). We recall that the prod- 

ucts fInU(I - oi)/(l - Wv+i-1), with v = (5 in (3.19) and with v = a in 
(3.20), are bounded in n since their limits for n -+ 00 exist. The factors 

i6+nflW$ and t+n, are dominated by nn(n-1)/2 for n o-+ c. Therefore, the 

square brackets in (3.19) and (3.20) tend to zero practically at the rate (t)n /2 

as n - oo0, for all (5 and a. Now iA - AiAI will tend to zero also at the rate 

Wn 2/2 provided Un/j)Q/ Qj)I and UnY)/L(/) grow with n at most like eYn+ for 

some y and T < 1, which may even dominate (pn)!pnnO for arbitrary p, p, 

and 0. We already know that the IQ(i) are bounded below by constants in- 

dependent of n. We similarly expect the constant L(/) either to be bounded 

below by a constant independent of n or to go to zero in a mild fashion (e.g., 

like e-vn, v > 0) as n - oo . As for the UnY), different types of behavior may 

occur depending on the nature of the function B(t). If B(t) is analytic on 

[0, tj], then Un,Y) = R() = o(pn) as n -* o0 for some p > 0, at worst. If B(t) 
is not analytic on [0, tj] (normally, B(t) fails to be analytic at t = 0) but is 

infinitely differentiable there, then usually Unk') = R_ - O((pn)!) as n - 00 

for some p > 0. Under these circumstances, Unj) / Qj)l and Un()/L(/) may 

grow with n at most like (pn)! for some p, and hence IA - Ai I tends to zero 

as n -- oo practically at the rate Cn2/2. We summarize this discussion in the 

following corollary to Theorem 3.1. 

Corollary. Assume that Unj)/IQi) I or UnY)/L$/) are O(eYn+) as n - 00 for 
some y and T < 1. Pick e > 0 such that co + c < 1. Then there exists a 
positive integer N for which 

(3.21) IA - AiI < (cw+ )n 2/2 when n > N. 

Remarks. (1) We believe that the discussion above shows clearly that the 

approach that we have taken to the convergence theory of Process II is a 

valid one, as the accompanying results give a realistic explanation of the 

observed behavior of Ai for n - oo0. 

(2) Theorem 3. 1 contains the known results for the cases (a) (0(t) = t, tj+I /t, 
< co, and (b) (0(t) = t3, a > 0, and t+ I/t1 = w . The rest of the results 
in Theorem 3.1 seem to be entirely new. 

Note. In the recent paper [1 1] some new results concerning Process II are pro- 

vided, primarily under the conditions of [9, Theorem 3] and other additional 

ones. For example, Theorem 3 in [11] treats the special case of our problem, 
namely, that with (0(t) = t, that has already been treated in [6] and [3], under 

the growth condition fk = O(rk) as k -- 00. Clearly, this growth condition is 
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very stringent compared to the one discussed following the statement of Theo- 
rem 3.1 in the present work. In particular, it implies that E'= fliti converges 
for t sufficiently close to zero, and this is not required in the present work. 
Theorem 4 in [11] produces an upper bound on S - SJp under the additional 
condition Sp1 < S. In the present work the functions (a(t) are quite general 
and we do not expect SJ < S to be satisfied in general. In particular, when 
a(t) is a complex function, S' < S may not necessarily have a meaning. 

3.2. Stability analysis of Process II. 
3.2.1. Theoretical stability analysis. A thorough stability analysis of Process II 
for the case (r(t) = t under the condition (3.2) has been provided in [6] (see 
also [3]). By refining their analyses, we are able to show (see notation of (2.1 1)) 
that 

n 

(3.22) ZyI,i I < Cn < COO forall j and n, 
i=O 

with Cn and COO precisely as in (3.5). Furthermore, when equality holds in 
(3.2), the first inequality in (3.22) becomes an equality. (The constants that 
are provided by [6] and [3] and that are analogous to Cn in (3.22) are quite 
complicated compared to Cn.) 

Again, a thorough analysis for the case (a(t) = t5, 3 real and 3 54 0, -1, 
-2, ..., when equality holds in (3.2), follows from that given in [3], and it 
reads 

(3.23) E1 Ioii_ +i| 
i=O = 

We note that the case 3 < 0 is not considered in [3], even though their analysis 
can easily be extended to all real 3 :$ 0, -1, -2, ..., and this is what we have 
done to obtain (3.23). 

As it turns out, we can use the technique of [3] to treat the case in which 
(p(t) = t5 when 3 is complex and equality holds in (3.2). First, we have 

(3.24) p(z) - z 
z 

_(+i1 independently ofj, 
i=O i=I 

for all 3. By using the known relations between the coefficients Yni of p(z) 
and its zeros aoi- , after some manipulation we obtain IYni I < n, i 0? 

i < n, where InY i = lJnU Z+Iw6t . Letting now z = 1, we have 

n n R~1~e 5+i- I 

(3.25) E Z Y',iI < f 1 _n () 
i=O = 

and this result seems to be new. 
Since the products on the right-hand sides of (3.23) and (3.25) have finite 

limits for n -+ oc, the absolute stability of GREP(1) with (a(t) - t5, 3 in 
general complex and 3 :0 O, -1, -2, ..., and t = wlto, =, 1, ..., is now 
established. 



ANALYSIS OF A GENERALIZED RICHARDSON EXTRAPOLATION PROCESS 1641 

We now go on to derive upper bounds for =0 I y', iI when (a(t) = t5h(t), 
from which we can also obtain stability results in some cases. 

Theorem 3.2. Under the conditions of Lemma 3.4 and with the notation therein, 
we have 

n 

(3.26) Z i Y,1 i? < (n ? CnJ's 
i=o 

and also 
n 

(3.27) E Yj , i I < Vn(j IFn ( l ) < Cn Pn(j), 
i=o 

where Cn is as defined in (3.5), 

- maxtj1+ ttj I I/h (t) I 
(3.28) n- I Qn) I 

Pj)- 1I{t}Imax C} 
Q=(j)IlID/{t-}Iltj+nmsat<-tj Ih(t)I' 

and Jn (3) is the sum of the moduli of the Yni corresponding to the special case 
(r(t) = t,. 

Proof. From (1.5) and (1.6) we first have 

_ ~~~~~n,Li 
(3.29) Dn tn{1i(t)} O<(it<+i ) - 

Therefore, 

(3.30) Zyi,i 1 Icni 
i=O In { / t) }Ii=O IP(ii 

Rewriting (3.30) in the form 

( 3.3 1I) J Ill}I [IDn {t t Ity+i Ih( t+ )I] 
and invoking (3.12) of Lemma 3.4, we have 

(3.32) Z 1"i I I'(t-j , 1 Z i I 

the expression inside the square brackets being nothing but rJ (3). From this, 
(3.26) follows. The proof of (3.27) can be done in a similar fashion. a 

Corollary. GREP(1) for Process II is stable 
(i) when 3 = 1 and the t1 satisfy (3.2), or 

(ii) when 3 $ 1 and is in general complex and the t1 satisfy (3.2) with 
equality there. 
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When 3 is real and the t1 satisfy (3.2), we have, in general, 
n 

(3.33) 1 iY il < Knl-6t 
-.iI 

for some K > 0 and all large n. 
i=O 

Proof. Case (i) of the first part follows by letting 3 = 1 in (3.26), recalling that 
1i7n(1) < Cn < C, and observing that Vn(') = 0(1) as n - 0x. 

Case (ii) of the first part follows again from (3.26) by recalling that Ijn (6) is 
bounded for all n when the t1 satisfy (3.2) with equality there, both for real 
and complex 3. 

The proof of (3.33) in the second part is achieved from (3.27) by showing 
that Jn(j) = O(n1-tj!In 1) as n -- oo. This, in turn, can be achieved by 

recalling that jQji)I is bounded below by a positive constant independent of n, 
by invoking Lemma A.10, and by a proper analysis of It1-a/h(t)j in [tj+n, ti] 
both for 3 > 1 and for 3 < 1. a 

Remark. Although the upper bound for EZn=0 I, i I given in (3.33) for arbitrary 
real 3 goes to infinity as n -? oo like CO-wl,1n, it is not necessarily true that 

Ei= 1in ,I -> 00 as n -* 00. In fact, we believe that Ei=oIn2I is bounded 
above by a finite constant, although we do not have a proof of this at this time. 
Judging from (3.26), one way of proving this would be by showing that rJ7j (3) 
is bounded for all n . Even this seems to be a difficult problem. 

3.2.2. Numerical assessment of stability by the W-algorithm. Before closing this 
section we would like to show how the W-algorithm itself can be used to actually 
compute n --= I n, I for each j and n, at no additional cost. As will 

become clear soon, the computation of IJ7 can be done simultaneously with 
that of Ai . All of this follows from Theorem 3.3 below. 

Theorem 3.3. Define the function P(t) arbitrarily for all t, except for to, ti, 
t2, ..., where it is defined by 

(3.34) P(tj) = (-l)/Ij(tj)I, j = o, 1, 2. 

Then 
n 

~ 1Y, /D-jD~P(t)}jj 
(3.35) I=O - IDn{l/9(t)}I 
Proof From (1.5) we first observe that c h c <0 aio = f 0 rJ. cn -1. 

Consequently, 

n 

(3.36) jDj{P(t)}j = cj'jI/ko(tj+j)I. 
i=O 

The result now follows from (3.30). o 

Comparing (3.35) with (1.6), we see that the computation of Fjn can be 
done simultaneously with that of AJ by simply augmenting the W-algorithm 
of Theorem 1.2 as follows: 
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(1) Add to (1.7) 

Ho = P(ts) = (-1)S/I(ts)I. 

(2) Add to (1.8) 
Hs+' -Hs 

k 
ts+k- tS 

(3) Add to (1.9) 
fS IHkI 

- k = INsI' 

4. AN APPLICATION: ACCELERATION OF CONVERGENCE OF SOME 

CONVERGENT AND DIVERGENT LOGARITHMIC SEQUENCES 

BY THE d(l)-TRANSFORMATION 

4.1. Existence of asymptotic expansions. Consider the infinite sequence{Sn}?loo 
where 

n 

(4.1) Sn=Zai, n=1,2,.... 
i=1 

Let w (n) = an , and assume that w (x), as a function of the continuous variable 
x, has an asymptotic expansion of the form 

00 

(4.2) w(x) -x--1 vix-i asx -) oo; vo $0, $ =0,-1, -2. 
i=O 

As is known, S = limnloo Sn exists and is finite, i.e., the infinite series 
Z,=1 ai converges, if and only if Re 3 > 0 . In this case, Theorems 2.1 and 2.2 
in [15] apply, and we have 

(4.3) S = Sn + nanf(n), 

where 
00 

(4.4) f(n) Zflni as n -oo, fBo $ 0. 
i=O 

Hence, the sequence {Sn }I'I belongs to the set LOGSF of sequences, which 
in turn is a subset of LOG, the set of logarithmically convergent sequences. 
For appropriate definitions we refer the reader to [2, p. 41]. We mention that 
Theorem 2.1 of [15] is a special case of a more general result given in [8], and 
a detailed proof of it can be found in [14]. 

The result that we give in Theorem 4.1 below is new, however, and is a 
nontrivial extension of Theorem 2.2 of [15] for Re 3 < 0. 

Theorem 4.1. Let Sn , an, and w (x) be as described in the first paragraph of this 
subsection. Consider Re 3 < 0 in (4.2), so that limnln0o Sn does not exist. Then 
there exists a constant S that serves as the antilimit of {Sn} 100 and a function 
f(n) such that (4.3) and (4.4) continue to hold. The antilimit S is given in the 
proof below. 
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Proof: Let N be some positive integer for which Re 3 + N > 0, and define 

N-1 

(4.5) w(n) = an - E vjn-6-'-'. 
1=o 

Obviously, as a function of the continuous variable x, w'(x) has the asymptotic 
expansion 

00 

(4.6) w(x)o x 6 N-1 E -i i' as x -* oo, 
i=O 

with Pi = v'N+i, i = 0, 1 . Thus, since Re 3 + N > 0, the sequence 
{Sn} I = where Sn = >jn=la. n = 1, 2, ..., converges. If we let S = 
limno0 Sn, then (4.3) and (4.4) become 

(4.7) S = Sn + nanf(n), 

and 
00 

(4.8) f(n) fin-i as n -+oo, 
i=o 

respectively, for some f(n) . Consider now {Un}I", where Un = Sn - Sn = 

En I ui, and u 
N 

= EN=l vin--i- n = 1, 2 . Since the function 
EZN-l vix-_-i_j is infinitely differentiable for all x > 0, we can apply the 
Euler-Maclaurin summation formula to EZn=1 ui = Un, and obtain 

(4.9) U= Un+n g(n), 

where 
00 

(4.10) g(n)~, yin-' asn---+oo, yo O. 
i=o 

Actually, U = Z=- viC(3 + i + 1), 4(z) being the Riemann zeta function. 
(For real d this result follows immediately from [10, p. 292, Ex. 3.2]. The 
case of complex 3 can be treated in a similar fashion. See also Example 5.1 in 
?5 of this work.) Combining (4.7) and (4.9) in Sn = Sn + Un , we have 

(4.11) S+U=Sn+nan [lf(n) + a g(n)] 

Now let S = S + U, and denote the term in the square brackets by f(n). 
Invoking the asymptotic expansions of an, an, f(n), and g(n), we can eas- 
ily show that f(n) satisfies (4.4) with f1o = yo/vo $ 0. This completes the 
proof. o 

As far as we know, divergent sequences of the logarithmic type considered 
here have not been treated in the literature of extrapolation methods before. 
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4.2. The Levin-Sidi d(1)-transformation. 

Definition 4.1. Let the sequence {S,} I , where S, = _ ai , n = 1, 2, 
be given, and denote its limit or antilimit by S.- Pick a sequence of integers 
{R,}l?0? such that 0 < Ro < R1 < R2 < . Then SnJ, the approximation to 
S, and the parameters 8ih, i = 0, 1, ..., n - 1, are defined to be the solution 
of the system of n + 1 linear equations 

n-i 

(4.12) SJ = SRI + RlaR, l/3l/R, j < I <+n. 
i=o 

This procedure thus generates a nonlinear sequence transformation, which we 
call the d(1)-transformation. 

We mention that for RI = / + 1, I = 0, 1, 2, ..., the d(1)-transformation 
reduces precisely to the u-transformation of Levin [7]. 

By drawing the proper analogy, we can now show that the sequence {Sn }IC 
considered in the previous subsection is actually identified with a function A(y) 
in F('), and that the d(1)-transformation is a GREP(1). This analogy runs as 
follows: 

(1) A(y) = a(t) *-+ Sn, thus y n-I . Therefore, y is a discrete variable 
that takes on the values 1, 1/2, 1/3 . Also r = 1 in (1.2) so that 
t = y for this case. 

(2) q (y) = (0(t) - nan, n = 1, 2, . Furthermore, by an = w(n) and 
by (4.2), o(t) = r1w(r1) is exactly of the form (0(t) = t'5h(t), with 
h(t) -IEIo viti as t 0+, that was considered in ?3. 

(3) y, = t, = 1/RI, 1 = 0, 1,2,..., and AJ SJ Consequently, the W- 
algorithm of Theorem 1.2 can be used to implement the d(1)-transforma- 
tion in an efficient manner by making the appropriate substitutions. In 
addition, it can also be augmented as shown at the end of the previous 
section to obtain the FJ exactly. We thus have 

(a) Moi = SRj/(RjaRj), Noi = 1/(RjaRj) Ho (-1)jlNol, 

j=0, 152,.... 
- 

k-i Mkj-1N k-i k-i 
(b M3) k 1t/lR+k - l/Rj k 1/RJ+k - 1/R1 

(4.13) H~ H 

H= k-i k-i j = ?O 1, ... k = 1, 25 .... 
Hk lj+f-IIlRjI 

(c) Sk= Ny X k INI j=0, 1, ..., k=0, 1. 

It is important to note that we do not need to know 5 in (4.2) in order to be 
able to apply the d(1)-transformation. In this sense the d(1)-transformation is 
a user-friendly procedure. 
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4.3. Choice of the R1, 1 = 0, 1,.... We recall that the R, in (4.12) are at 
our disposal. This provides the d(l)-transformation with a large amount of 
flexibility that most other methods of acceleration do not possess. 

The simplest choice of the R1 is given by R, = 1 + 1, 1 = 0,1. As 
mentioned already, for this choice the d(l)-transformation reduces to the Levin 
u-transformation. A detailed analysis of the u-transformation for both Process 
I and Process II, in the context of linearly and logarithmically convergent se- 
quences, has been given by the author in [14] and [1 5]. As has been established 
in the survey [21], among most of the known nonlinear sequence transforma- 
tions, the u-transformation produces the best results when applied to convergent 
sequences of the form described in this section with real 6. It is also known, 
however, that when applied to such sequences, the u-transformation is prone to 
roundoff error propagation. This does not enable one to increase the accuracy by 
adding more terms of the sequence {S,} I?= in the extrapolation procedure. On 
the contrary, addition of more terms ultimately results in total loss of accuracy. 
It must be mentioned, though, that the u-transformation is not the only ex- 
trapolation procedure that suffers from numerical instabilities; almost all other 
well-known sequence transformations as well suffer from the same problem. 

By a judicious choice of the R, we can cause the d(l)-transformation to 
become extremely stable. The following was first suggested in [4, Appendix B] 
and incorporated in the FORTRAN 77 code that implements GREP and the 
d(m)-transformation that was included there: 

(4.14) Ro = 1, Rl+1 = LaRJ + 1, 1 = 0,1,..., for somea> 1. 

(Actually, the R, proposed here are slightly different than those in [4], but the 
difference is insignificant.) 

The important point to note is that 

(4.15) aR1 < Rl+1 < aRl + 1, 

which implies 

(4.16) a/ < Rl<E = l 1>1 
i=O 

Thus, R, increases exponentially in 1 like al. From the equations in (4.12) 
we realize that Sn is determined from the sequence elements Si, 1 < i < Rj+n 
Obviously, the number Rj+n of these Si is greater than aRi+n by (4.16). This 
shows that if we pick a too large, e.g., a > 2, then the number of the sequence 
elements Si used in the extrapolation procedure increases at a prohibitive rate 
for the sequence Snj' n = 0, '1, 2, ..., i.e., for Process II. This means that a 
should take on moderate values for practical purposes. We have found that, 
depending on the finite-precision arithmetic being used, a in the range [1.1, 
1.5] produces excellent results, with the R, increasing relatively midly. 

Finally, we would like to emphasize that any other strategy for which the R, 
increase exponentially in 1 will also do. (For example, we can pick R, = 1 + 1 
for 1 < (a - 1)-i and Rl+1 = LaRlJ for 1 > (a - 1)-i .) Note also that if we 
let a = 1 in (4.14), what we have is precisely the u-transformation. 
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4.4. Application of the theory. As can be deduced from (4.15), the choice of the 
R, given in (4.14) results in t, = l/R1, 1 = 0, 1, ..., which satisfy 

(4.17) I+ < t1+1 < cotl, 1 = 0, 1, ... co ale (O, l ). 

Consequently, the t1 satisfy both (2.1) and (3.2). 
As mentioned in ?4.2, (9(t) = rlw(rl) = tlh(t) ta Ec=0 viti as t -) 0+. 

Consequently, Theorems 2.1 and 3.1 apply directly to the approximations Snj 
whether {Sn}l?=I converges or not. The excellent results obtained by applying 
the d(l)-transformation with R, as in (4.14) are thus explained in a very accu- 
rate manner by Theorem 2.1 and Theorem 3.1 and its corollary. 

5. NUMERICAL EXAMPLES 

We have applied the d(l)-transformation with the strategy described by (4.14) 
to many infinite series of the logarithmic type discussed in the previous section. 
In particular, we have applied it to all the (real) logarithmically convergent test 
series in Table 6.1 of [21]. For all of these series the limits were obtained 
almost to machine accuracy. We do not bring the relevant numerical results. 
Instead, we concentrate on the series that define the Riemann zeta function 
4'(z) and the Gauss hypergeometric function 2F1 (b, c; d; 1), and use the d(l)- 
transformation to analytically continue these functions in their parameters. We 
also use the zeta function series to demonstrate and verify numerically several 
features of our convergence theory. 

Example 5.1. Consider the series E' an with an = n-a, 3 $ 0, -1, 
-2, ..., which converges for Re 3 > 0 and diverges otherwise. Let Sn = 

En71ai, n=1,2. Wehave 

(5.1) _I- Cv (6 + 1) - 
d 

E ( *)Bin-i as n o 

provided 3 5 0. (See [10, p. 292, Ex. 3.2] for real 3.) Here, Bi are the 
Bernoulli numbers. For our purposes it is enough to note that Bo = 1, B1 = 
-I, and B2i+i = 0, i = 1, 2, ..., while B2i, i = 1, 2, ..., are all nonzero. 
Adding an to both sides of (5.1), we see that Sn satisfies (4.3) and (4.4), with 
S= (3 +1) and fi=36 -1Q )Bi for i=0 and i>2 and 81=-1. Thus 
f3 = f5 = ,= *7 = 0, the remaining /i being nonzero. 

We have applied to this series the d(l)-transformation with the R, as in 
(4.14) and a = 1.2. We have considered both Re36 > 0 and Re36 < 0. 

Since (9(t) = t5 precisely for this case, all of the results of ?2 pertaining 
to Process I apply with the same notation. In particular, Theorem 2.1 implies 
that, whether limn ooSn exists or not, S - Sn is roughly speaking, O(bi) for 
n =0, O(bi) for n = 1, O(bJ) for n = 2, O(b2Ji+) for n = 2i- 1, 2i, and 
i = 2, 3, ... . We also have that limj O(S - Snj+l)/(S - Sn) is exactly equal 
to b1 for n=0,b2 for n=1, b3 for n=2, b2i+1 for n=2i-1,2i,and 
i = 2, 3, ... Note that, with w = a, we have bk = aA+k-l, k = 1, 2,... 
in this example. 
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TABLE 5.1.1. The ratios IS-SJ+1I/IS-S- I, j = O, 1, 2,... 
for the series of (3 + 1) with 3 =-1. 1 + I0i in Example 5.1. 
The d(l)-transformation is implemented with ac = 1.2 in (4.14) 

00.6819 1 2 3 4 5 6 7 

0 0.68198 
1 1.01959 0.17519 
2 1.13949 0.47730 0.09301 
3 1.15994 0.74946 0.28310 0.08471 
4 1.15351 0.87191 0.51851 0.20117 0.08967 
5 1.28769 1.20705 0.80118 0.40371 0.21609 0.10765 
6 1.23637 0.84141 0.82108 0.50811 0.35545 0.18820 0.10717 
7 1.19784 0.92683 0.60510 0.46617 0.41161 0.25852 0.15936 0.10255 
8 1.25511 1.08213 0.79574 0.41558 0.42521 0.29770 0.21918 0.14155 
9 1.20856 0.93818 0.82359 0.51676 0.40189 0.29706 0.25260 0.17717 
10 1.23536 1.04450 0.78542 0.55520 0.50133 0.28675 0.27139 0.19975 
11 1.24360 1.02312 0.86440 0.53707 0.54167 0.35177 0.27757 0.20814 
12 1.24023 1.00958 0.82832 0.57892 0.53204 0.37367 0.33687 0.20400 
13 1.23067 1.00301 0.81363 0.54771 0.56062 0.36111 0.35798 0.23893 
14 1.21838 1.00070 0.81273 0.54197 0.53690 0.37741 0.35113 0.24874 
15 1.22833 1.02929 0.83760 0.55862 0.54381 0.36694 0.37024 0.24329 
16 1.22736 1.01629 0.85277 0.57713 0.56089 0.37385 0.36641 0.25646 
17 1.22018 1.00871 0.83506 0.58292 0.57395 0.38531 0.37400 0.25277 
18 1.22319 1.02139 0.84064 0.57603 0.58058 0.39609 0.38574 0.25851 
19 1.22965 1.02628 0.85533 0.58433 0.57913 0.40240 0.39661 0.26738 
20 1.22655 1.01456 0.84845 0.58921 0.58421 0.40000 0.40157 0.27440 
21 1.22580 1.01748 0.84033 0.58281 0.58673 0.40276 0.39971 0.27751 
22 1.22519 1.01766 0.84413 0.57836 0.58153 0.40411 0.40181 0.27575 
23 1.22362 1.01647 0.84405 0.58171 0.57837 0.40052 0.40274 0.27707 
24 1.22511 1.02027 0.84644 0.58368 0.58226 0.39935 0.40056 0.27812 
25 1.22315 1.01604 0.84671 0.58467 0.58344 0.40211 0.39977 0.27655 
26 1.22177 1.01666 0.84406 0.58514 0.58408 0.40319 0.40212 0.27612 
27 1.22232 1.01901 0.84724 0.58518 0.58523 0.40442 0.40346 0.27823 
28 1.22270 1.01884 0.84927 0.58816 0.58594 0.40579 0.40485 0.27951 
29 1.22190 1.01740 0.84791 0.58901 0.58808 0.40637 0.40605 0.28062 

In Table 5.1.1 we give the numbers I (S - Si+')/(S - Sn) obtained by tak- 
ing 3= -1.1 + 5i. The agreement of these numbers with the theory is simply 
remarkable. For this value of 3 the n = 0 and n = 1 columns in the extrapo- 
lation table of (1.4) diverge, while the remaining ones converge. 

Similarly, all the results of ?3 pertaining to Process II apply, again with the 
same notation. For example, if we let 3 be real, then (3.19) in Theorem 3.1 
holds with co = a , and Q(i) = 1 and t1l = wl to, 1 = 0, 1, In addition, 
for this case, Mn-) 0(n!(27r)-n) as n -- o0, as a result of which Theorem 3.1 
predicts that IS - SniI - 0 as n -x oo practically at the rate of on 2/2 , and (3.21) 
holds. (When 3 is complex, Theorem 3.1 makes the same prediction provided 
we pick a to be a positive integer > 2 and R1 = alRo so that t1 = wolto with 
co = a. . Note that numerical results indicate very clearly that Si -_ S as 
n o x very quickly even when RI are picked to satisfy (4.14).) 

In Table 5.1.2 we give the relative errors I(S - SnJ)/SI and the corresponding 
FJn, for j = 0 and n = 0, 1, 2, . In addition, we give the corresponding 
results obtained from the u-transformation. 
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TABLE 5.1.2. Relative errors in So and F?n , n = 0, 1, ..., for 
the series of C(3 + 1) with 3 = -1.1 + lOi in Example 5. 1. The 
d(l)-transformation is implemented once with a = 1.2 and once 
with a = 1 in (4.14). (ca = 1 in (4.14) gives rise precisely to 
the u-transformation.) 

a = 1.2 in (4.14) ar-1 in (4.14) 

l(nu 7(- SV/SI l(Snu -SV/S1 
0 4.49D-01 L.OOOOOD +00 4.49D-01 L.OOOOOD +00 
1 8.20D -01 2.13032D +00 8.20D-01 2.13032D +00 
2 3.43D -01 1.80641D +00 3.43D-01 1.80641D +00 
3 5.32D-02 1.17365D +00 5.32D-02 1.17365D +00 
4 7.25D-03 1.10671D +00 7.25D-03 1.10671D +00 
5 9.59D-04 1.33628D +00 9.59D-04 1.33628D +00 
6 1.38D-04 1.55307D +00 1.23D-04 1.98440D +00 
7 1.89D -05 1.67944D +00 1.59D-05 3.47167D +00 
8 2.34D -06 1.81933D +00 2.06D-06 6.90773D +00 
9 2.60D-07 2.06963D +00 2.64D-07 1.52175D +01 
10 2.60D -08 2.51579D +00 3.43D -08 3.63622D +01 
11 2.32D -09 3.09382D +00 4.43D -09 9.27666D +01 
12 1.87D-10 3.69876D +00 5.71D-10 2.49591D +02 
13 1.36D-ll 4.23788D +00 7.43D-ll 7.01407D +02 
14 8.61D-13 4.68989D +00 9.56D-12 2.04316D +03 
15 4.95D-14 5.16084D +00 1.24D-12 6.13177D +03 
16 2.44D-15 5.76105D +00 1.61D-13 1.88668D +04 
17 1.08D-16 6.53878D +00 2.06D-14 5.92820D +04 
18 4.19D-18 7.45320D +00 2.69D-15 1.89611D +05 
19 1.41D-19 8.39573D +00 3.45D-16 6.15708D +05 
20 4.31D-21 9.25756D +00 4.45D-17 2.02540D +06 
21 1.1OD-22 9.99091D +00 5.77D-18 6.73731D +06 
22 2.60D -24 1.05601D +01 7.39D -19 2.26280D +07 
23 5.08D -26 1.09772D +01 9.56D -20 7.66368D +07 
24 8.94D-28 1.13184D +0l 1.23D-20 2.61455D +08 
25 1.19D-29 1.16504D +0l 1.58D-21 8.97694D +08 
26 9.39D-30 1.20158D +01 2.09D-22 3.09953D +09 
27 1.06D-29 1.24180D +01 6.03D-23 1.07550D +10 
28 1.12D-29 1.28386D +01 3.39D-22 3.74821D +10 
29 7.73D-30 1.32600D +01 1.09D-21 1.31136D + ll 

Example 5.2. Let an+1 = [(b)n(c)n]/[(d)nn!], n = 0, 1. Provided Red > 
Re (b + c) , we have 

00 

(5.2) Zan= 2F((bbc;dd;l)=V _S 
n=1 7(d - b)17(d - c) 

which is a well-known result concerning Gauss' hypergeometric function. 
By the fact that (e)n = F(e + n)/F(e), n = 0, 1, ..., and by Stirling's 

formula for the gamma function, we have that an = w (n) is precisely as in 
(4.2) with 3 = d - (b + c) . Furthermore, (5.2) can be continued analytically in 
b, c, and d, and this is a well-known fact. 

We have applied the d(0)- transformation to the series above with the R, as 
in (4.14) and a = 1.2. In Table 5.2 we give the relative errors I(S - Sn)/SI 
and the corresponding FJn for j = 0 and n = 0, 1, 2, .... We have done the 
computations with (i) b = 0.5, c = 0.5, and d = 1.5 (convergent series) and 
(ii) b = 0.6, c = 0.4, and d = 1 + 10i (divergent series). 
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TABLE 5.2. Relative errors in Sno and Fn, n = 0, 1, 
for the series of 2F1(b, c; d; 1) in Example 5.2. The d(l)- 
transformation is implemented with a = 1.2 in (4.14) 

b = 0.5, c 0.5, d = 1.5 -b = 0.6, c = 0.4, d = + 10i 
n S USn)I( I _ __ __ _ (S- SnUVSI iP ii iZ 

0 3.63D -01 I.OOOOOD +00 2.40D -02 1.00000D +00 
1 2.04D - 01 2.OOOOOD +00 1.53D -03 1.05157D +00 
2 2.99D -02 1.12857D +01 2.15D -05 1.24945D +00 
3 3.83D -03 5.36087D +01 3.76D -08 1.57834D +00 
4 2.58D -05 2.15573D +02 1.23D -09 2.12335D +00 
5 2.74D -05 8.28418D +02 4.18D - 11 3.03909D +00 
6 1.42D -06 1.77857D +03 1.37D - 12 2.43071D +00 
7 1.78D -07 3.03959D +03 5.1OD - 14 2.13733D +00 
8 2.02D -08 5.50246D +03 2.33D - 15 2.46923D +00 
9 4.06D - 10 9.53210D +03 1.19D - 16 2.57753D +00 
10 1.44D -10 1.65700D +04 6.46D - 18 2.78215D +00 
11 3.29D - 12 2.66015D +04 3.80D - 19 2.97763D +00 
12 5.09D - 13 3.84489D +04 2.38D -20 3.07529D +00 
13 2.62D - 14 5.06996D +04 1.52D -21 3.11742D +00 
14 7.24D - 16 6.37515D +04 9.73D -23 3.22193D +00 
15 7.37D - 17 8.10522D +04 6.07D -24 3.51280D +00 
16 1.72D - 19 1.03698D +05 3.65D -25 3.95987D +00 
17 9.75D -20 1.31024D +05 2.08D -26 4.47974D +00 
18 1.59D -21 1.62253D +05 1.1OD -27 5.03799D +00 
19 6.11D -23 1.95171D +05 5.38D -29 5.61874D +00 
20 1.66D -24 2.25862D +05 2.41D -30 6.17390D +00 
21 1.54D -26 2.52777D +05 1.11D -31 6.66761D +00 
22 1.21D -27 2.75075D +05 3.37D -32 7.08243D +00 
23 3.11D -28 2.94182D +05 1.96D -32 7.44890D +00 
24 5.73D -28 3.13027D +05 2.50D -32 7.82183D +00 
25 4.18D -28 3.31981D +05 2.88D -32 8.21410D +00 
26 3.13D -28 3.51567D +05 2.46D -32 8.62300D +00 
27 5.79D -28 3.71911 D +05 2.02D -32 9.04079D +00 
28 3.05D -28 3.92375D +05 2.75D -32 9.45763D +00 
29 6.74D -28 4.12079D +05 2.OOD -32 9.86025D +00 

APPENDIX. DIVIDED DIFFERENCES OF POWERS WITH APPLICATIONS 

Lemma A.1 (Hermite-Gennochi). Let f(x) be in Cn[a, b], and let xo, xi, 
Xn be all in [a, b]. Then 

(A. 1) [xo'Xi* 5 Xnl= f(n) (g ixi) dg l- dgn , 
Tn i=O 

where 

(A.2) 
n n 

Tn={ l.,n) : 0< ,i 1, i = 1,..n , E, < I}; go 10E 
i=l i=l 

For a proof of this lemma see, e.g., [1, p. 120]. Note that the argument z = 
En=0 gxX of f(n) in (A. 1) is actually a convex combihation of xo, x1, ..., xn 
as O < gj < 1, i = 0, 1, ..., n, and En= g1 = 1 . If we orderthe xi such that 
xo < Xi < ... < Xn, then z E [xo, xn] C [a, b] 



ANALYSIS OF A GENERALIZED RICHARDSON EXTRAPOLATION PROCESS 1651 

As a consequence of the Hermite-Gennochi formula we obtain the following 
result, which says that if f(n)(x) is monotonic on [a, b], then so is the nth- 
order divided difference of f(x), in a sense to be made clear below. 

Lemma A.2. Let f(n) (x) be nondecreasing on [a, b]. Let xi < xi, a < 
xi ,xi < b i = 0, 1, ...,n, and assume xi < xi at least for one value of 
i. Then 

(A.3) f[o l .,x]fxo, xi, ..., xtn] 

If f(n)(x) is strictly increasing on [a, b], then strict inequality holds in (A.3). 

Proof. Since Xi > 0, i = 0, 1, ..., n, we have z = Zi0 x1 <ZEi= = -Z. 
Therefore, since both z and 2 are in [a, bl, f(Z)(z) ? f(n)(z). The result in 
(A.3) now follows by employing (A. 1). The rest is simple. o 

We now apply Lemma A.1 to powers. Throughout the remainder of this 
appendix, to > t1 > t2 > *.., and Di are exactly as in ?1. 

We shall also be making use of the following result. 

Lemma A.3. Let 4 = woi ̂  i = 0, 1, ..., and define bn to be the divided 
difference operator of order n over the set of points ij , ij+, ...i t^+n. Define 
A(t) = t-, a being a complex number in general. Then 

(A.4) Di{/(t)} = A[1j, tij+, *-., tj+n] - n+n(n-l)2 1 _n ~clnn(n-)/2j,3+ 1. - 

Proof. The assertion (A.4) can be proved by induction on n. A direct proof is 
possible by proper manipulation of the determinant representation of divided 
differences, see [12, p. 45]. n 

It is important to analyze the behavior of bi{A(t)} for n oo . Note 
that the product Hjnj[(l - wJ+i-1)/(l - wi)] has a finite and nonzero limit 

as n o0. Consequently, IDj{A(t)}I Cjzy- 2 2 fo r some C1 > 0 and 

= t^jw1/2, which means that ID'{A(t)}I -4 oo as n -o 00 practically like 

or-n 22 . This implies that, as n -- oo, Db{A(t)} dominates (pn)!pnn9 for any 
p, p, and 6. Also, bi{t 2}/Dl{t-'1}1 = O(WRe(,5l-c52)n) = o(l) as n -x 00, 

when Re3s1 > Re62, and 6i 54 0, -1, -2,. 

Lemma A.4. Let to, t,..., satisfy ti+I/ti < c forsome C E (0, 1), and define 
ti = w'ito, i = O, 1, . Define also A(t) = t-, where a is reaL Then, for 
n > -3, 

(A.5) [D{/A(t)}I > IDn{A(t)}I = 09n+n(nl)/2 j+n 1 1- 

Proof. First, A(n)(t) = (-l)n(W)nt-,-n, where (n)n is the Pochhammer sym- 
bol, is monotonic and of one sign for t > 0. Obviously, IA(n)(t)l is strictly 
decreasing for t > 0 when n > -3. Next, ti < ti, i = 0, 1, 2, ..., so that, 
if we define z = oj7 i 1it1+i and z = OjII=J'ib+j, with (5l, -., gn) e Tn and 

Xo = 1 - En , l, then we have z < 2. Consequently, IA(n)(z)I > IA( )(n) . 
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Applying now Lemma A. 1, we obtain 

(A.6) 

ID{/A(t)}I = IA(n)(z)jd . dXn > f I(n)(_)Id,. d. n = IAW{1(t)}I. 
nT Tn 

The rest follows from Lemma A.3. 0 

Lemma A.5. Let 31 and 32 be two real numbers and 31 $ 32. Define Ai(t) = 
rti, i= 1, 2 . Let to > tl > t2> **. > 0. Then, provided 31 54 0, -1, -2, 

(A.7) Di{A2(t) } = ( 5 t-52DJ{A A(t) } for some i E (tj+n , tj) . 

Proof. From Lemma A. 1, 

(A.8) DI{ A2(t)} = J ((z)d<.. dsn = J [ ( ) I Ain(z)di ... dsn 

Since /((z) is of one sign on Tn we can apply the mean value theorem to 
the second integral to obtain 

(A.9) 
A = ) A A~(i)D{A(),F(t+,t) DI {A2 (t)} = 2 (t)()(n) (z)dE, dn 2 DI { I (t) I A~~I Tn 

This proves (A.7). o 

Corollary. When 31 > 62 in Lemma A.5, then 

I+f -i DJA2(t)}I - 

(352)n (A. 1 0) 61 (g)n tj+ ID' 
- .g2 |JA{/ (t) }I 

< 
|(050n 

| 
1ja 

from which we also have, for some constant K > 0, 

(A.ll) Dn{A2(t)}K< - o(1) as n -oo. (A.11) 
~~Dn{\1 (t)}- 

Proof. That (A. 10) is true is obvious from (A.7). The result in (A. 11) follows 

by substituting in the right inequality of (A. 10) the identity 

(352)n _ J(1) J(n + 3S2) 

(01)n R(32) J(n + 31) 

and by invoking Stirling's formula. o 

We now go on to investigate DiI{yi(t)} for n -x oc, where y/(t) - t-g(t), 
g(t) being infinitely differentiable in [0, tj]. This is a problem of crucial im- 
portance in the analysis of Process II considered in ?3 of this work. 

Lemma A.6. Pick to > tl > t2 > ... > 0 such that tj1+/tj < co for some wt) E 
(0, 1), and let ii = woito, i = 0, 1, ... . Consider the function yI(t) = t-g(t), 
where 8 is a positive integer and g(t) is in C??[O, tj] such that g(O) $4 0 and 

maxo<t<tj Ig(n)(t)l = O((pn)!pn) as n -x oc, for arbitrary p > 0 and p > 0. (If 
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g(t) is analytic, then p < 1.) Then 

(A. 1 2) DJ{y/(t)} = Q(j)Djn{ta}; Q(j) g(O) as n oo. 

In addition, 

(A. 13) jD1J{t(t)}j > - Q-)' +I 1 _ ,6n+n(n-l)/2 jc5+nlII- 

Equality holds in (A.13) when ti = ii, i = 0, 1,. 

Proof. We start by expressing yi(t) in the form 

6-1 

(A.14) g(t) = et-'+i + g(t), Eo =g(0) 
i=o 

where 4(t) is in C??[O, tj]. By the linearity of DJ, we have 

3-1 

(A. 1 5) Din{l(t)} = E 1Dn{t +i } + Dn{4(t)}. 
i=o 

Thus, Q(i) in (A. 12) is given by 

-1DJ {t-5+i}I DJn{4(t)} 
(A.16) Q(j)=go+Z i } + 

n=1 DJ{t-3} DJ {t-,'} 

From the corollary of Lemma A.5, the summation on the right-hand side of 
(A.16) is o(1) as n oo . Furthermore, from (3.8) and by our assumption on 
g(t), we have 

(A.17)Di I {(t)}j <? max I j4(n)(t)I = O((p'n)!) as n x_ 00, some p. n 
n ! ~ti+n?<t?_<tj 

By (A.17), (A.5), and the discussion following Lemma A.3, Di{4(t)}/DJ{A(t)} 
0 0 as n -- 00. This completes the proof of (A. 12). The rest follows from 

Lemma A.4. o 

We do not know whether Lemma A.6 remains valid for 3 not a positive 
integer. Imposing additional conditions on g(t) and/or the ti, however, we 
are able to obtain results of the form similar to (A. 13). This is done in Lemmas 
A.7 and A.8. These lemmas suggest that Lemma A.6 might hold also when 3 
is not a positive integer, but this is an open problem. 

Lemma A.7. Let ti and ii, i = 0, 1, ..., be as in Lemma A.6. Consider the 
function yV(t) = t-g(t), where 3 is not an integer and can be complex, and 
g(t) = E ektk, eo = g(O) A O, where q is an integer > O. 

(i) If 3s is real: then DJ I{V(t)} satisfies (A. 12) and (A. 1 3). 
(ii) If 3 is complex, in general, with fX = Re 3, then Db { Vg(t)} satisfies 
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(A.18) Dn{yY(t)} = QU)/Dn{3t}; Q(i) g(O) as n -o, 

and hence 

(A.19) ~D n't}~- I~ II 
1 - 

(I,V( n (Oan+n(n- 1)/2 a+f n 1 -= 

Proof. The proof of part (i) is almost identical to that of Lemma A.6. The 
proof of part (ii) can be achieved in a similar manner by recalling the last 
remark following Lemma A.3. We leave the details to the reader. a 

Lemma A.8. Let ti and ti, i = 0, 1, ..., and g(t) be as in Lemma A.6, and 
consider thefunction Vg(t) = t-g(t), 3 real and not an integer. Assume also 
that g(t) is nonzero on [0, tj] and that (_1)kg(k)(t) > 0, k = 0, 1, 2, 
for te[O,tj]. Then 

(A.20) DIj{y(t)} = Qnj)Djf{tv}; IQ/j)l > L(/) Ig(0)j as n co. 

Hence, Dj{y(t)} satisfies (A.13) too. 

Proof. From Leibniz's formula for divided differences (see, e.g., [12, p.50]), we 
have 

n 

(A.2 1) DI f{ y(t)} = EDi {t- }Dni{g(t) }. 
i=O 

Now since Ds{h(t)} = h(k)(4)/k!, E E (ts+k, ts), we have 

C- =Dj{t- }Di'.{g(t)} 

(A.22) n (a). Ig(n-i)()I = (_ I Z a g z z, =- i! ii (n-i)! j E (tj+i,tj) ?i E(tj+ntj+i)t) 

where we have also used the assumption on the sign of g(n-i)(t). From (A.22) 
it is obvious that Ci, for i > io, where io = 0 if 3 > 0 and io = [1 - ] if 
3 < 0, all have the same sign, so that 

n 

(A.23) I 2: Cil ? ICnl = 1g(t1+n)IjDj{t-}lj -g(0)IjDn{t-'}j as n oo. 
i=io 

This implies that IEn io C1I grows at least like IDJ{t-1}1 for n -* oo. The 
summation EZ?=O C1 , on the other hand, is either empty or has a fixed number of 
terms, and, by our assumption on g(t), has a rate of growth bounded by (p'n)! 
as n - oo0, for some p' > 0. Since ID{It-5}1 grows with n, roughly speaking, 
like ce-n /2, we see that (iO C/ ZEnio C1) - 0 as n x-+ o. Consequently, 
En=0 C1 En -o Ci as n -x o0. The result in (A.20) follows from this and from 
(A.23). o 

Note that the conditions (-l)kg(k)(t) ? 0 on [0, T], k = 0, 1, ..., im- 
ply that g(t) is completely monotonic on [0, T]. For completely monotonic 
functions, see e.g., [23, Chapter IV]. 
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Finally, we have the following more general, but weaker, result, which holds 
for arbitrary y/(t), but may be useful for y/(t) = t-g(t), with Re 3 = a and 
g(t) infinitely differentiable in [0, tj]. 

Lemma A.9. Let to > t1 > > 0 be arbitrary, and let yI(t) be in general 
complex, infinitely differentiable on (0, tj], such that y/(n)(t) is nonzero there 
for all large n. Let also 

(A.24) L)= [ mmin IRe G(t)2 + min I Im Gn(t)12 , 

where 

(A.25) Gn(t) = A A(t) = t-, a real. 

Then, for all large n, 

(A.26) jDij{f(t)}j > L(j)jDj{t }1jj 

Proof. Manipulating the Hermite-Gennochi formula for Di {I V(t) we have 

(A.27) Dn{qV'(t)} Gn (z)A(n) (z)dE, d,n n~~~~T 

in the notation of Lemma A.4. Since A(n (z) is real and of one sign on Tn, we 
can apply the mean value theorem to the real and imaginary parts of (A.27) to 
obtain 

(A.28) Di IV{(t)} = [Re Gn (Or) + i Im Gn()] J Ai(n) (z)dXi - dXn 

The result in (A.26) follows by taking the modulus of both sides and invoking 
the Hermite-Gennochi formula once more. The details are left to the reader. o 

By adding the condition tj+1/tj < wt) E (0, 1) we can, by using Lemma A.4, 
replace the right-hand side of (A.26) by Lni)bD{t-a}. 

Before ending this appendix, we give lower bounds on IDJ{t-5}l for a real 
and a $ 0, -1, -2, ..., which are expressible explicitly in terms of the ti, 
where to > tI > t2 > ... > 0, with no other restrictions on the ti. 

Lemma A.10. Let 3 be real and 3 54 0, -1, -2, ... . 

(i) When a > 1, there exists a constant K1 > 0 such that 

(A.29) ID{ut-3}l > Kin 1 (tjtj+. tj+n)... 

(ii) When a < 1, there exists a constant K2 > 0 such that 

(A.30) IDn {t-a}Ij > K2n 1t+n(tjtj+i ***tj+n) -1 

Proof. The inequalities (A.29) and (A.30) follow by letting (3i , 32) = (3, 1) 
and (3i , 62) = (1, 3) in (A.10), and by invoking 

DJ{ 1} = (-1)n(tjtj+* t1+ny4. 0 
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These results can be used in Lemma A.6, part (i) of Lemma A.7, and in 
Lemmas A.8 and A.9. 

ACKNOWLEDGMENT 

The author wishes to thank Professor Alan Pinkus of the Technion for very 
helpful conversations he has had with him during the course of this work. The 
author would also like to thank the referee for bringing the recent works [9] and 
[ 1 1 ] to his attention. 

BIBLIOGRAPHY 

1. K. E. Atkinson, An introduction to numerical analysis, Wiley, New York, 1978. 
2. C. Brezinski and M. Redivo Zaglia, Extrapolation methods: Theory and practice, North- 

Holland, Amsterdam, 1991. 
3. R. Bulirsch and J. Stoer, Fehlerabschdtzungen und Extrapolation mit rationalen Funktionen 

bei Verfahren vom Richardson-Typus, Numer. Math. 6 (1964), 413-427. 
4. W. F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation 

process, SIAM J. Numer. Anal. 24 (1987), 1212-1232. 
5. H. L. Gray and S. Wang, An extension of the Levin-Sidi class of nonlinear transformations 

for accelerating convergence of infinite integrals and series, Appl. Math. Comput. 33 (1989), 
75-87. 

6. P.-J. Laurent, Un theoreme de convergence pour le procede d'extrapolation de Richardson, 
C.R. Acad. Sci. Paris 256 (1963), 1435-1437. 

7. D. Levin, Development of non-linear transformations for improving convergence of sequences, 
Internat. J. Comput. Math. B3 (1973), 371-388. 

8. D. Levin and A. Sidi, Two new classes of non-linear transformations for accelerating the 
convergence of infinite integrals and series, Appl. Math. Comput. 9 (1981), 175-215. 

9. A. Matos and M. Prevost, Acceleration property for the columns of the E-algorithm, Numer. 
Algorithms 2 (1992), 393-408. 

10. F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974. 
11. M. Prevost, Acceleration property for the E-algorithm and an application to the summation 

of series, Adv. Comput. Math. 2 (1994), 319-341. 
12. L. Schumaker, Spline functions: Basic theory, Wiley, New York, 1981. 
13. A. Sidi, Some properties of a generalization of the Richardson extrapolation process, J. Inst. 

Math. Appl. 24 (1979), 327-346. 
14. , Convergence properties of some nonlinear sequence transformations, Math. Comp. 

33 (1979), 315-326. 
15. , Analysis of convergence of the T-transformation for power series, Math. Comp. 35 

(1980), 833-850. 
16. , An algorithm for a special case of a generalization of the Richardson extrapolation 

process, Numer. Math. 38 (1982), 299-307. 
17. , Generalizations of Richardson extrapolation with applications to numerical 

integration, Numerical Integration III (H. Brass and G. Hammerlin, eds.), Birkhauser, Basel, 
1988, pp. 237-250. 

18. , A user-friendly extrapolation method for oscillatory infinite integrals, Math. Comp. 
51 (1988), 249-266. 

19. , On a generalization of the Richardson extrapolation process, Numer. Math. 57 
(1990), 365-377. 

20. , On rates of acceleration of extrapolation methods for oscillatory infinite integrals, 
BIT 30 (1990), 347-357. 



ANALYSIS OF A GENERALIZED RICHARDSON EXTRAPOLATION PROCESS 1657 

21. D. A. Smith and W. F. Ford, Acceleration of linear and logarithmic convergence, SIAM J. 
Numer. Anal. 16 (1979), 223-240. 

22. A. H. Van Tuyl, Acceleration of convergence of a family of logarithmically convergent 
sequences, Math. Comp. 63 (1994), 229-245. 

23. D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton, NJ, 1946. 

COMPUTER SCIENCE DEPARTMENT, TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 

32000, ISRAEL 
E-mail address: asidiQcsa. cs.technion.ac. il 


	Cit r255_c260: 


